Calculate, and you will see that in place of three hundred and thirty-three pounds of powder, the quantity is reduced to no more than one hundred and sixty pounds."
"What are you aiming at?" asked the president.
"If you push your theory to extremes, my dear major," said J. T. Maston, "you will get to this, that as soon as your shot becomes sufficiently heavy you will not require any powder at all."
"Our friend Maston is always at his jokes, even in serious matters," cried the major; "but let him make his mind easy, I am going presently to propose gunpowder enough to satisfy his artillerist's propensities. I only keep to statistical facts when I say that, during the war, and for the very largest guns, the weight of the powder was reduced, as the result of experience, to a tenth part of the weight of the shot."
"Perfectly correct," said Morgan; "but before deciding the quantity of powder necessary to give the impulse, I think it would be as well----"
"We shall have to employ a large-grained powder," continued the major; "its combustion is more rapid than that of the small."
"No doubt about that," replied Morgan; "but it is very destructive, and ends by enlarging the bore of the pieces."
"Granted; but that which is injurious to a gun destined to perform long service is not so to our Columbiad. We shall run no danger of an explosion; and it is necessary that our powder should take fire instantaneously in order that its mechanical effect may be complete."
"We must have," said Maston, "several touch-holes, so as to fire it at different points at the same time."
"Certainly," replied Elphinstone; "but that will render the working of the piece more difficult. I return then to my large-grained powder, which removes those difficulties. In his Columbiad charges Rodman employed a powder as large as chestnuts, made of willow charcoal, simply dried in cast- iron pans. This powder was hard and glittering, left no trace upon the hand, contained hydrogen and oxygen in large proportion, took fire instantaneously, and, though very destructive, did not sensibly injure the mouth-piece."
Up to this point Barbicane had kept aloof from the discussion; he left the others to speak while he himself listened; he had evidently got an idea. He now simply said, "Well, my friends, what quantity of powder do you propose?"
The three members looked at one another.
"Two hundred thousand pounds." at last said Morgan.
"Five hundred thousand," added the major.
"Eight hundred thousand," screamed Maston.
A moment of silence followed this triple proposal; it was at last broken by the president.
"Gentlemen," he quietly said, "I start from this principle, that the resistance of a gun, constructed under the given conditions, is unlimited. I shall surprise our friend Maston, then, by stigmatizing his calculations as timid; and I propose to double his 800,000 pounds of powder."
"Sixteen hundred thousand pounds?" shouted Maston, leaping from his seat.
"Just so."
"We shall have to come then to my ideal of a cannon half a mile long; for you see 1,600,000 pounds will occupy a space of about 20,000 cubic feet; and since the contents of your cannon do not exceed 54,000 cubic feet, it would be half full; and the bore will not be more than long enough for the gas to communicate to the projectile sufficient impulse."
"Nevertheless," said the president, "I hold to that quantity of powder. Now, 1,600,000 pounds of powder will create 6,000,000,000 litres of gas. Six thousand millions! You quite understand?"
"What is to be done then?" said the general.
"The thing is very simple; we must reduce this enormous quantity of powder, while preserving to it its mechanical power."
"Good; but by what means?"
"I am going to tell you," replied Barbicane quietly.
"Nothing is more easy than to reduce this mass to one quarter of its bulk. You know that curious cellular matter which constitutes the elementary tissues of vegetable? This substance is found quite pure in many bodies, especially in cotton, which is nothing more than the down of the seeds of the cotton plant. Now cotton, combined with cold nitric acid, become transformed into a substance eminently insoluble, combustible, and explosive. It was first discovered in 1832, by Braconnot, a French chemist, who called it xyloidine.